Structural Convergence Results for Approximation of Dominant Subspaces from Block Krylov Spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Convergence Results for Approximation of Dominant Subspaces from Block Krylov Spaces

This paper is concerned with approximating the dominant left singular vector space of a real matrix A of arbitrary dimension, from block Krylov spaces generated by the matrix AAT and the block vector AX. Two classes of results are presented. First are bounds on the distance, in the two and Frobenius norms, between the Krylov space and the target space. The distance is expressed in terms of prin...

متن کامل

Convergence of Restarted Krylov Subspaces to Invariant Subspaces

The performance of Krylov subspace eigenvalue algorithms for large matrices can be measured by the angle between a desired invariant subspace and the Krylov subspace. We develop general bounds for this convergence that include the effects of polynomial restarting and impose no restrictions concerning the diagonalizability of the matrix or its degree of nonnormality. Associated with a desired se...

متن کامل

Computing Approximate (Symmetric Block) Rational Krylov Subspaces without Explicit Inversion

It has been shown that approximate extended Krylov subspaces can be computed –under certain assumptions– without any explicit inversion or system solves. Instead the necessary products A−1v are obtained in an implicit way retrieved from an enlarged Krylov subspace. In this paper this approach is generalized to rational Krylov subspaces, which contain besides poles at infinite and zero also fini...

متن کامل

Rational Krylov Subspaces for Large - Scale

The rational Krylov space is recognized as a powerful tool within Model Order Reduction techniques for linear dynamical systems. However, its success has been hindered by the lack of a parameter-free procedure, which would effectively generate the sequence of shifts used to build the space. In this paper we propose an adaptive computation of these shifts. The whole procedure only requires to in...

متن کامل

Recycling Krylov subspaces for CFD applications

The most popular iterative linear solvers in Computational Fluid Dynamics (CFD) calculations are restarted GMRES and BiCGStab. At the beginning of most incompressible flow calculations, the computation time and the number of iterations to converge for the pressure Poisson equation are quite high, since the initial guess is far from the solution. In this case, the BiCGStab algorithm, with relati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications

سال: 2018

ISSN: 0895-4798,1095-7162

DOI: 10.1137/16m1091745